Pages

Wednesday, January 15, 2020

The Paleontology Behind Pokemon: Part 2

Since the last time I talked about Pokemon on here many more interesting Pokemon have been created and added to the franchise, many of which are, indeed based on prehistoric animals.  In addition, there were many older Pokemon that I simply didn't have the space to cover in one post. (and I was made well aware of it in the comments section!) So after four years here is the sequel of the paleontology behind Pokemon! (If you don't know what Pokemon are, or haven't read the first post, you can access it here before reading this one.)

Read it?  Good!  Let's get started with part 2!

Lapras


Lapras is from the first generation of Pokemon to be released, and is a long-standing fan-favorite Pokemon design.  Although quite a few creative liberties were added, its general appearance is clearly based on a plesiosaur.  The wide body, four flippers, short tail, and long neck, are all telltale characteristics of this iconic group of prehistoric marine reptiles.  If anything, Lapras may have been more based on legends of lake cryptids, like the Loch Ness Monster, which are mostly based on people's visions of plesiosaurs anyway.  

Plesiosaurus skeleton on display at the London Museum of Natural History.

Unlike real plesiosaurs, Lapras carries its head upright in a swan-like pose most of the time, which was how plesiosaurs were depicted for a long while before more recently when paleontologists figured out they more likely held their necks horizontally in front of them.  Also, Lapras sports a turtle-like shell on its back, a horn in the middle of its forehead, and external ears like a mammal, which are all unique to it, and not to any real plesiosaur.  

Yanmega
Yanmega is the second life stage of the dragonfly Pokemon, Yanma.  Yanmega, however is probably based on the giant prehistoric insect, Meganeura, and not simply a bigger dragonfly, based on the name.  

Meganeura fossil.  This insect differs from modern dragonflies because the patterns on its wings are less complex.

Despite this, Meganeura, wasn't actually a dragonfly, but a different kind of insect that was similar, but still had a few different characteristics, setting it apart, like the structure of the wings.  It lived during the Carboniforous Period, about 300 million years ago, and the largest individuals had wingspans of over two feet.

Lileep and Cradily


Lileep and its evolution (second life stage) Cradily are based on prehistoric crinoids.  Crinoids are a group of invertebrates related to sea stars, also known as sea lilies, that attach themselves to rocks and feed on particles of food that come to them via their feathery appendages.  

Fossil crinoids.

Despite being animals, they superficially look like underwater flowers. (and the Pokemon based on them even have the grass type)  Fossils of ancient crinoids date back to the Ordovician Period, 485 million years ago.

Tirtouga and Carracosta


Tritouga and its evolution Carracosta are fossil Pokemon, which means that in the Pokemon game a fossil needs to be dug up, then revived into a living Tirtouga, in order to have one.

Archelon skeleton on display at the Canadian Museum of Nature

Because of this they are most likely based prehistoric sea turtles, like Archelon, and not simply a generic modern sea turtle.  Sea Turtles thrived during the Cretaceous Period alongside dinosaurs, pterosaurs, and other marine reptiles, like plesiosaurs and mosasaurs, that are now extinct.  

Dragapult


Dragapult and its earlier forms are the among the newest wave of Pokemon to be added to the franchise.  They are dragon and ghost typing, which at first confused me.  I get that a dragon type could be literally anything remotely reptilian or amphibious looking, which certainly fits here, but the ghost I didn't quite understand.  I noticed it had a transparent tail and floated around like a ghost, but anyone who knows a lot about Pokemon, understands that very few of the designs are truly random, and usually have a deeper, not always obvious inspiration.  For sure there had to be a more specific meaning than simply "floaty ghost dragons are cool".  Then I read the official flavor text in the game for the first stage, Dreepy, and I realized what it was.  

"After being reborn as a ghost Pokemon, Dreepy wanders the areas it used to inhabit back when it was alive in prehistoric seas."

This is a Pokemon based on the concept of long dead prehistoric creatures coming back as ghosts.  Now look at the shape of this guy's head...

Diplocaulus skull on display at the American Museum of Natural History in New  York.

These guys are based on the prehistoric amphibian, Diplocaulus.  Diplocaulus lived during the Permian period, and is known for its wide, boomerang-shaped head.  Diplocaulus also would have had a tail that was flattened from side to side for swimming in fresh water which is also included in Dragapult's design.  (Although Diplocaulus would have swam in fresh water, not the sea.)  It's a wonderful model for a Pokemon design, and adding in the element of it being a ghost, nodding at the fact that this is a creature that normally wouldn't be alive in modern times, is very creative.  

Arctozolt and Dracozolt


The newest wave of Pokemon games also feature prehistoric Pokemon that need to be revived from fossils as well.  However, the game designers attempted to make it different this time by having players revive two of four available fossils together (one front end and one back end) to make one hybrid Pokemon.  This is a nod to the occurances of paleontologists occasionally accidentally assigning certain bones to the bodies of different species, creating a sort of "Frankenstein fossil" if you will.  The Pokemon designers exaggerated this point by purposefully making sure that each Pokemon that resulted from this method of revival looks as lopsided as possible.  

Velociraptor skeleton on display at the Dublin Zoo.

In the case of Arctozolt and Dracozolt, it appears the head and arms are from a small theropod dinosaur, possibly Velociraptor.  Dracozolt even has lightning bolt-shaped wings on the arms, which may be based on how Velociraptor and its relatives had primary feathers on their forearms in life.  The back ends are harder to pinpoint, but they're likely some sort of marine reptile, like an ichthyosaur, and a large dinosaur, possibly a thyreophoran.  

Arctovish and Dracovish



The other two Pokemon resulting from this method of revival have the same two back ends, but the head of a prehistoric fish, no doubt based on Dunkleosteus.  Dunkleosteus was a massive prehistoric fish from the extinct placoderm group of fish, which had bony plates covering their bodies.  Dunkleosteus didn't have teeth, but rather wide, blade-like sheets of bone forming a mouth that worked like a bear trap.  

Arctovish has the fish head on a marine animal body, which would in theory flow fine design-wise, but they made it so the poor Dunkleosteus head is upside down.  To my knowledge there have been no instances of any paleontologist accidentally completely flipping an animal's head in the final reconstruction, but there have been cases where certain skulls were initially a puzzle of exactly how they would have been held on the body, for sure.

Dunkleosteus skull on display at the Vienna Natural History Museum in Austria

As for Dracovish, one might argue that a Dunkleosteus head on a dinosaur body would be really cool, but the Pokemon designers must have really wanted it to look silly and less intimidating, so they stuck the head on the tip of the tail instead.  This might be nodding at the original reconstruction of the famous plesiosaur, Elasmosaurus, by Edward Drinker Cope, who wrongly placed the animal's skull on the wrong end in his first reconstruction, mistaking the long neck for a long tail.  

Edward Drinker Cope's original illustration of Elasmosaurus with the head placed on the wrong end.

That is all for this week!  I know there are certainly more Pokemon that are based on prehistoric beasts.  Can you list any below?  I may do a part three one day if there are enough!

References

Anderson, P.S.L.; Westneat, M. (2009). "A biomechanical model of feeding kinematics for Dunkleosteus terrelli (Arthrodira, Placodermi)Paleobiology35(2): 251–269.

Clarkson, E. N. K., 1979, Invertebrate Palaeontology and Evolution, 3rd Edition: London, Chapman and Hall, 434 p.

Dudley, Robert (April 1998). "Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotion performance". The Journal of Experimental Biology201 (Pt8): 1043–1050.

4 comments:

  1. Thanks for posting this info. I just want to let you know that I just check out your site and I find it very interesting and informative. I can't wait to read lots of other posts.
    Buy Pokemon 6IV

    ReplyDelete
  2. Love the article! Thanks for your insights into these weird and wonderful beasts. One thing I might add about Dragapult's ghostly tail is that it may be an allusion to how we don't really have tales for the Diplocaulus specimens we have. I think one specimen has about 4 caudal vertebrae and that's it.

    ReplyDelete
  3. i am browsing this website dailly , and get nice facts from here all the time .

    ReplyDelete