Sunday, August 30, 2015

Acrocanthosaurus: Beast of the Week

This week we are checking Acrocanthosaurus atokensisAcrocanthosaurus was a meat-eating dinosaur that lived in the United States, including Oklahoma, Texas, Wyoming, and even as far east as Maryland, during the Early Cretaceous Period, between 125 and 100 million years ago.  Acrocanthosaurus was a very large meat-eater, at about thirty nine feet long from snout to tail, and was likely the top predator in its environment.  The name Acrocanthosaurus, translates to "High Spine Lizard" and is in reference to this dinosaur's particularly tall neural arches, which gave it a distinctive ridge down its back.

Acrocanthosaurus atokensis life reconstruction by Christopher DiPiazza.

Acrocanthosaurus' spine was interesting in that we haven't found another theropod dinosaur with anything similar.  It is often compared to the unrelated, Spinosaurus' sail-like structure, but Acrocanthosaurus' runs all the way from the back of the skull to the tail, rather than just the back like in SpinosaurusAcrocanthosaurus also has a close relative from Spain, Concavenator, which has a triangular-shaped hump over its hips, but again, this is concentrated to one area of the spine. The purpose of this ridge-like look is a mystery.  Some believe it would have formed a hump rather than a ridge, like what you might see on a modern bison's skeleton.  (Which also have extended neural arches, but only over the shoulder girdle.)   As of now the safe answer could always be that Acrocanthosaurus possessed this ridge down its spine for display purposes to other members of its species.  Maybe they were larger in males than in females and played a role in mate selection?  Perhaps it was significantly shorter in juveniles?  There is still a lot we don't know!

Bison skeleton.  Note the tall neural arches above the shoulders.  The living animal has a hump there.

The skull of Acrocanthosaurus is long, low, and narrow in the front, but the back of the lower jaw become increasingly deep, suggesting there was a lot of muscle there in life, allowing this dinosaur to bite down hard in life.  The teeth of Acrocanthosaurus were slightly curved and serrated.  They were also thicker than the very blade-like teeth of its later relatives, like Giganotosaurus and Cacharodontosaurus, suggesting Acrocanthosaurus was more of a generalist hunter.  This is also further supported by the fact that Acrocanthosaurus' range was so widespread across what is now the United States, which would have consisted of multiple different kinds of habitats.

Acrocanthosaurus skull from the North Carolina Museum of Natural Sciences.

The front limbs of Acrocanthosaurus were short, but powerful and had a decent range of motion to them.  Each hand possessed three hooked claws.  It is difficult to say exactly how Acrocanthosaurus would have utilized these arms since they were so short, but they may have played a part when it was going after large prey, like a sauropod, at close quarters.

Acrocanthosaurus skeletal mount on display at the North Carolina Museum of Natural Sciences.

When alive, Acrocanthosaurus, would have coexisted with many other dinosaurs, including the much smaller predator, Deinonychus, the ornithopod, Tenontosaurus, and a few different kinds of large sauropods.  In fact, there is a dinosaur track way in Texas consisting of large theropod prints that are believed to have been made by Acrocanthosaurus along with those of a large Sauropod.  These tracks show, since at times the theropod prints overlap the sauropod ones, that those of the theropod were made later, and could have possibly been tracking the larger herbivores.  At one point some scientists believe the theropod even attacked the sauropod, since the meat-eater tracks skip for a while where they finally intersect. (did it latch onto the side of its intended prey?)  This hypothesis can't be fully proven, however.  Even though no bones from either dinosaur were found with this trackway, it is predicted the predator was Acrocanthosaurus because the size, location, and age of the find matches with the Acrocanthosaurus bones that have been found in other nearby states.

Photograph of the tracks believed to have been from Acrocanthosaurus possibly stalking a sauropod in the field in Texas.  You can now see these tracks in person on display at the American Museum of Natural History in New York City.

That is all for this week!  As always please comment below or on our facebook page!


Currie, Philip J.; Carpenter, Kenneth. (2000). "A new specimen of Acrocanthosaurus atokensis (Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower Cretaceous, Aptian) of Oklahoma, USA". Geodiversitas 22 (2): 207–246.

Lockley, Martin G. (1991). Tracking Dinosaurs: A New Look at an Ancient World. Cambridge: Cambridge University Press. p. 252pp.

Senter, Phil; Robins, James H. (2005). "Range of motion in the forelimb of the theropod dinosaur Acrocanthosaurus atokensis, and implications for predatory behaviour". Journal of Zoology 266 (3): 307–318.

Stovall, J. Willis; Langston, Wann. (1950). "Acrocanthosaurus atokensis, a new genus and species of Lower Cretaceous Theropoda from Oklahoma". American Midland Naturalist (American Midland Naturalist, Vol. 43, No. 3) 43 (3): 696–728.

Thomas, David A.; Farlow, James O. (1997). "Tracking a dinosaur attack". Scientific American 266 (6): 48–53.


  1. I love your depiction!! It really gives the sense of the animal's weight. By the way, I'm super glad you included the fact that Acrocanthosaurus is known from the Arundel Clay of Maryland. People often forget that the eastern US had its fair share of allosaurs as well.

  2. Although you show the famous Paluxy River "trackway" from Glen Rose, TX, readers should know that thousands of tracks of Acro. and sauropod tracks are found in and around Glen Rose. Although many have eroded badly or broken up since Roland Bird's work there in the early 1940's, many hundreds are still visible when the river is low (typically late summer). The best place to view them is in Dinosaur Valley State Park, just west of Glen rose. There are also many metatarsal tracks in the riverbed, probably made by ornithomimids (as recent work by Farlow, Phil Currie, and I recently showed), and a few trails of ornithopods (bipedal plant-eating dinos). Many of the metatarsal tracks were mistaken for "human" tracks when their digits were subdued by infillings or mud collapse. For more info on that, and a photo gallery from several tracksites, see my Paluxy website at:
    Thanks! GK

    BTW, your last reference, the 1997 Scientific American paper by Thomas and Farlow, is not vol. 266 pages 48-53. It's vol. and pages 74-79.